Sensitivity evaluation of rhodamine B hydrazide towards nitric oxide and its application for macrophage cells imaging.
نویسندگان
چکیده
A colorless and non-fluorescent rhodamine derivative, rhodamine B hydrazide (RH), is applied to detect nitric oxide and form fluorescent rhodamine B (RB). The reaction mechanism of RH with NO is proposed in this study. The probe shows good stability over a broad pH range (pH>4). Furthermore, fluorescence intensity of RH displays an excellent linearity to the NO concentration and the detection limit is as low as 20 nM. A 1000-fold fluorescence turn-on from a dark background was observed. Moreover, the selectivity study indicated that the fluorescence intensity increasing in the presence of NO was significantly higher than those of other reactive oxygen/nitrogen species. In exogenously generated NO detection study, clear intracellular red fluorescence was observed in the presence of S-nitroso-N-acetyl-D,L-penicillamine (SNAP, a kind of NO releasing agent). In endogenously generated NO detection study, increasing incubation time of RH with lipopolysaccharied (LPS) pre-treated cells could obtain a highly fluorescent cell image. These cell imaging results demonstrated that RH can efficiently penetrate into Raw 264.7 cells and be used for detection of exogenously and endogenously generated nitric oxide.
منابع مشابه
Developed Method Application for Nitrite Ion (NO2¯ ) Analysis of Tib -186 Macrophage Like Cell Lines by Rapid Isocratic HPLC System with High Sensitive Glassy Carbon Electrochemical Detector
A rapid isocratic method of high performance liquid chromatography system (HPLC) with a glassy carbon working electrode of electrochemical detector is set up for quantitative detection of trace amount of nitrite ion (NO2¯) in aqueous protein containing cell lysate, cell media, plasma, serum, urine and other body fluids. The solid extraction reversed phase cartridges ...
متن کاملSynthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent
Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...
متن کاملSynthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent
Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytica chimica acta
دوره 708 1-2 شماره
صفحات -
تاریخ انتشار 2011